A.1
B.4
C.\(\frac{1}{2}\)
D. 8
Điều kiện:\[x > 0\]
\[{\log _3}x \le {\log _{\frac{1}{3}}}(2x) \Leftrightarrow {\log _3}x \le - {\log _3}(2x)\]
\[ \Leftrightarrow {\log _3}x + {\log _3}(2x) \le 0\]
\[ \Leftrightarrow {\log _3}(2{x^2}) \le 0\]
\[ \Leftrightarrow 2{x^2} \le 1\]
\[ \Leftrightarrow - \frac{{\sqrt 2 }}{2} \le x \le \frac{{\sqrt 2 }}{2}\]
Kết hợp với x>0 ta được\[0 < x \le \frac{{\sqrt 2 }}{2}\]
Do đó\(\left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = \frac{{\sqrt 2 }}{2}}\end{array}} \right. \Rightarrow {a^2} + {b^2} = \frac{1}{2}\)
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247