A.\[\frac{{12}}{5}\]
B. \[\frac{5}{{12}}\]
C. \[\frac{{15}}{{16}}\]
D. \[\frac{{16}}{{15}}\]
Điều kiện :
\[x\sqrt {{x^2} + 2} + 4 - {x^2} > 0 \Leftrightarrow x\left( {\sqrt {{x^2} + 2} - x} \right) + 4 > 0 \Leftrightarrow x.\frac{2}{{\sqrt {{x^2} + 2} + x}} + 4 > 0\]
\[ \Leftrightarrow \frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + \frac{{4\left( {\sqrt {{x^2} + 2} + x} \right)}}{{\sqrt {{x^2} + 2} + x}} > 0 \Rightarrow 6x + 4\sqrt {{x^2} + 2} > 0\] (vì \[\sqrt {{x^2} + 2} > x;\,\forall x\])
\[ \Leftrightarrow 2\sqrt {{x^2} + 2} > - 3x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 3x < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 3x \ge 0}\\{4({x^2} + 2) > {{( - 3x)}^2}}\end{array}} \right.}\end{array}} \right.\]</>
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{\left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{5{x^2} < 8}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\)
Khi đó ta có\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow {{\log }_2}\left( {x\left( {\sqrt {{x^2} + 2} - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{6x + 4\sqrt {{x^2} + 2} }}{{\sqrt {{x^2} + 2} + x}}} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\end{array}\]
\[\begin{array}{l} \Leftrightarrow lo{g_2}(6x + 4\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2 + x} ) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}[2(3x + 2\sqrt {{x^2} + 2} )] - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}2 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow 1 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) + 3x + 2\sqrt {{x^2} + 2} \le lo{g_2}(\sqrt {{x^2} + 2} + x) + x + \sqrt {{x^2} + 2} ( * )\end{array}\]
Xét hàm số \[f\left( t \right) = t + {\log _2}t\,\] với t>0 ta có \[f'\left( t \right) = 1 + \frac{1}{{t.\ln 2}} > 0;\,\forall t > 0\] nên f(t) là hàm đồng biến trên\[\left( {0; + \infty } \right)\]Từ đó
\[\begin{array}{l}( * ) \Leftrightarrow f(3x + 2\sqrt {{x^2} + 2} ) \le f(\sqrt {{x^2} + 2} + x)\\ \Leftrightarrow 3x + 2\sqrt {{x^2} + 2} \le \sqrt {{x^2} + 2} + x\\ \Leftrightarrow \sqrt {{x^2} + 2} \le - 2x\end{array}\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2x \ge 0}\\{{x^2} + 2 \le 4{x^2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{3{x^2} \ge 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{\left[ {\begin{array}{*{20}{c}}{x \ge \frac{{\sqrt 6 }}{3}}\\{x \le - \frac{{\sqrt 6 }}{3}}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x \le - \frac{{\sqrt 6 }}{3}\)
Kết hợp điều kiện \(\left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\) ta có\[ - \frac{{\sqrt {40} }}{5} < x \le - \frac{{\sqrt 6 }}{3}\] hay\[ - \sqrt {\frac{8}{5}} < x \le - \sqrt {\frac{2}{3}} \]
Tập nghiệm bất phương trình\[S = \left( { - \sqrt {\frac{8}{5}} ; - \sqrt {\frac{2}{3}} } \right]\] nên\[a = \frac{8}{5};b = \frac{2}{3} \Rightarrow a.b = \frac{8}{5}.\frac{2}{3} = \frac{{16}}{{15}}.\]
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247