Cho phương trình log 7 ( x^2 + 2 x + 2 ) + 1 > log 7 ( x^2 + 6 x + 5 + m ) . Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;...

Câu hỏi :

Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?

A.36

B.35

C.34

D.Vô số

* Đáp án

* Hướng dẫn giải

ĐK:\[{x^2} + 6x + 5 + m > 0.\]

\[\begin{array}{*{20}{l}}{{{\log }_7}\left( {{x^2} + 2x + 2} \right) + 1 > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow {{\log }_7}7\left( {{x^2} + 2x + 2} \right) > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow 7\left( {{x^2} + 2x + 2} \right) > {x^2} + 6x + 5 + m}\\{ \Leftrightarrow 7{x^2} + 14x + 14 - {x^2} - 6x - 5 - m > 0}\\{ \Leftrightarrow 6{x^2} + 8x + 9 - m > 0}\end{array}\]

Bất phương trình đã cho có tập nghiệm chứa (1;3)

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} + 6x + 5 + m > 0,\forall x \in (1;3)}\\{6{x^2} + 8x + 9 - m > 0,\forall x \in (1;3)}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - {x^2} - 6x - 5,\forall x \in (1;3)}\\{m < 6{x^2} + 8x + 9,\forall x \in (1;3)}\end{array}} \right.\left( * \right)\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge \mathop {max}\limits_{[1;3]} f(x)}\\{m \le \mathop {min}\limits_{[1;3]} g(x)}\end{array}} \right.\end{array}\)

với\[f\left( x \right) = - {x^2} - 6x - 5\] và\[g\left( x \right) = 6{x^2} + 8x + 9\]

Ta có:\[f'\left( x \right) = - 2x - 6 = 0 \Leftrightarrow x = - 3 \notin \left( {1;3} \right)\] và\[f'\left( x \right) < 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = f\left( x \right)\] nghịch biến trên \[\left( {1;3} \right)\]

\[ \Rightarrow \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = - 12 \Rightarrow m \ge - 12\]

\[g'\left( x \right) = 12x + 8 = 0 \Leftrightarrow x = - \frac{2}{3} \notin \left( {1;3} \right)\] và \[g'\left( x \right) > 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = g\left( x \right)\] đồng biến trên (1;3)

\[ \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right) = g\left( 1 \right) = 23 \Rightarrow m \le 23\]

Vậy\[ - 12 \le m \le 23\]

Mà\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 12; - 11;...;23} \right\}\] hay có\[23 - \left( { - 12} \right) + 1 = 36\] giá trị.

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình logarit !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247