Xét bất phương trình log^2 2 2 x − 2 ( m + 1 ) log 2 x − 2 < 0 . Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng (Căn bậc hai của 2 ; + vô cực) .

Câu hỏi :

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

A.\[m \in \left( {0; + \infty } \right)\]

B. \[m \in \left( { - \frac{3}{4};0} \right)\]

C. \[m \in \left( { - \frac{3}{4}; + \infty } \right)\]

D. \[m \in \left( { - \infty ;0} \right)\]

* Đáp án

* Hướng dẫn giải

Điều kiện: x>0

\[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]

\[ \Leftrightarrow {\left( {1 + {{\log }_2}x} \right)^2} - 2\left( {m + 1} \right){\log _2}x - 2 < 0\left( 1 \right)\]

Đặt \[t = {\log _2}x\]Vì\[x > \sqrt 2 \]nên\[{\log _2}x > {\log _2}\sqrt 2 = \frac{1}{2}\]

Do đó\[t \in \left( {\frac{1}{2}; + \infty } \right)\]

(1) thành\[{\left( {1 + t} \right)^2} - 2\left( {m + 1} \right)t - 2 < 0 \Leftrightarrow {t^2} - 2mt - 1 < 0\left( 2 \right)\]

Yêu cầu bài toán tương đương tìm m để bpt (2) có nghiệm thuộc\[\left( {\frac{1}{2}; + \infty } \right)\]

Xét bất phương trình (2) có: \[{\rm{\Delta '}} = {m^2} + 1 > 0,\forall m \in \mathbb{R}\]

\[f\left( t \right) = {t^2} - 2mt - 1 = 0\]có ac<0 nên f(t) luôn có 2 nghiệm phân biệt\[{t_1} < 0 < {t_2}\]nên tập nghiệm của (2) là\[({t_1};{t_2})\]

Khi đó cần\[\frac{1}{2} < {t_2} \Leftrightarrow m + \sqrt {{m^2} + 1} > \frac{1}{2} \Leftrightarrow m > - \frac{3}{4}\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình logarit !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247