Cho m = log a căn bậc hai của a b với a,b>1 và P = log^2 a b + 54 log b a . Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:

Câu hỏi :

Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:

A.2.

B.3.

C.4.

D.5.

* Đáp án

* Hướng dẫn giải

Ta có \[P = \log _a^2b + 54{\log _b}a = \log _a^2b + \frac{{54}}{{{{\log }_a}b}}\]

Đặt\[t = {\log _a}b\] thì \[P = {t^2} + \frac{{54}}{t}\]

Vì a,b>1 nên\[t = {\log _a}b > 0\]

Áp dụng bất đẳng thức Cô – si ta có

\[P = {t^2} + \frac{{54}}{t} = {t^2} + \frac{{27}}{t} + \frac{{27}}{t} \ge 3\sqrt[3]{{{{27}^2}}} = 27.\]

Đẳng thức xảy ra khi và chỉ khi\[{t^2} = \frac{{27}}{t} \Leftrightarrow t = 3.\]

Ta có\[m = {\log _a}\sqrt {ab} = \frac{1}{2}{\log _a}\left( {ab} \right) = \frac{1}{2}\left( {1 + {{\log }_a}b} \right) = \frac{1}{2}\left( {1 + t} \right) = \frac{1}{2}\left( {1 + 3} \right) = 2\]Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình logarit !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247