Xét các số thực x,y thỏa mãn

Câu hỏi :

Xét các số thực x,y thỏa mãn \[{2^{{x^2} + {y^2} + 1}} \le ({x^2} + {y^2} - 2x + 2){4^x}\]. Giá trị lớn nhất của biểu thức \[P = \frac{{8x + 4}}{{2x - y + 1}}\;\] là \[a + \sqrt a \].Tìm a

* Đáp án

* Hướng dẫn giải

Bước 1: Chia cả 2 vế của bất phương trình cho\[{4^x}\] và đặt \[t = {x^2} + {y^2} - 2x + 1\]

Nhận xét:\[{x^2} + {y^2} - 2x + 2 = {\left( {x - 1} \right)^2} + {y^2} + 1 > 0\,\,\,\forall x,y\]

Bpt \[ \Leftrightarrow {2^{{x^2} + {y^2} - 2x + 1}} \le {x^2} + {y^2} - 2x + 2\]

Đặt\[t = {x^2} + {y^2} - 2x + 1\] bất phương trình trở thành\[{2^t} \le t + 1 \Leftrightarrow {2^t} - t - 1 \le 0\]

Bước 2: Xét hàm đặc trưng\[f\left( t \right) = {2^t} - t - 1\] và đánh giá t từ đó đánh giá\[{\left( {x - 1} \right)^2} + {y^2}\]

Xét hàm số\[f\left( t \right) = {2^t} - t - 1\]  có\[f'\left( t \right) = {2^t}\ln 2 - 1 = 0 \Leftrightarrow t = {\log _2}\left( {{{\log }_2}e} \right).\]

BBT:

Xét các số thực x,y thỏa mãn  (ảnh 1)

Suy ra ta có\[0 \le t \le 1 \Rightarrow {\left( {x - 1} \right)^2} + {y^2} \le 1\]

Bước 3: Biến đổi P và tìm min, max

Ta có:

\[P = \frac{{8x + 4}}{{2x - y + 1}} \Leftrightarrow 2Px - Py + P = 8x + 4\]

\[ \Leftrightarrow P - 4 = \left( {8 - 2P} \right)x + Py \Leftrightarrow 3P - 12 = \left( {8 - 2P} \right)\left( {x - 1} \right) + Py\]

\[ \Leftrightarrow {\left( {3P - 12} \right)^2} \le \left[ {{{\left( {8 - 2P} \right)}^2} + {P^2}} \right]\left[ {{{\left( {x - 1} \right)}^2} + {y^2}} \right]\]

\[ \Rightarrow {\left( {3P - 12} \right)^2} \le {\left( {8 - 2P} \right)^2} + {P^2} \Leftrightarrow 4{P^2} - 40P + 80 \le 0\]

\[ \Leftrightarrow 5 - \sqrt 5 \le P \le 5 + \sqrt 5 \]

Bước 4: Xét dấu “=” xảy ra

Dấu “=” xảy ra

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{8 - 2P}}{P} = \frac{{x - 1}}{y} = - \frac{2}{{\sqrt 5 }}}\\{{{(x - 1)}^2} + {y^2} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 1 = - \frac{2}{{\sqrt 5 }}y}\\{\frac{9}{5}{y^2} = 1}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1 \mp \frac{2}{3}}\\{y = \pm \frac{{\sqrt 5 }}{3}}\end{array}} \right.\end{array}\)

\[ \Rightarrow \max P = 5 + \sqrt 5 \]  đạt được khi\[x = \frac{1}{3};y = \frac{{\sqrt 5 }}{3}\]

Vậy a=5

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình logarit !!

Số câu hỏi: 35

Copyright © 2021 HOCTAP247