A.11.487.000 đồng
B.14.517.000 đồng
C.55.033.000 đồng
D.21.776.000 đồng
Áp dụng công thức \[P = {P_0}{\left( {1 + r} \right)^n}\]
Giá trị ngôi nhà sau 10 năm là: \[P = {10^9}{\left( {1 + 0,05} \right)^5} = {10^9}.1,{05^5}\]
đồng.
Sau khi chi tiêu mỗi thàng thì số tiền người sinh viên còn lại là 60% lương.
Trong 2 năm 2020 – 2021: số tiền có được là: 0,6a.24 (đồng).
Trong 2 năm 2022 – 2023: số tiền có được là: 0,6a(1 + 0,1).24 (đồng)
Trong 2 năm 2024 – 2025: số tiền có được là:\[0,6a{\left( {1 + 0,1} \right)^2}.24\] (đồng)
Trong 2 năm 2026 – 2027: số tiền có được là:\[0,6a{\left( {1 + 0,1} \right)^3}.24\] (đồng)
Trong 2 năm 2028 – 2029: số tiền có được là: \[0,6a{\left( {1 + 0,1} \right)^4}.24\](đồng)
⇒ Tổng số tiền người sinh viên có trong 10 năm là:
\[0,6a.24 + 0,6a(1 + 0,1).24 + 0,6a{(1 + 0,1)^2}.24 + 0,6a{(1 + 0,1)^3}.24 + 0,6a{(1 + 0,1)^4}.24\]
\[ = 0,6a.24[1 + (1 + 0,1) + {(1 + 0,1)^2} + {(1 + 0,1)^3} + {(1 + 0,1)^4}]\]
\[ = 14,4a(1 + 1,1 + 1,{1^2} + 1,{1^3} + 1,{1^4})\]
\[ = 14,4a.\frac{{1.(1 - 1,{1^5})}}{{1 - 1,1}} = 87,91344a\]
Để sau đúng 10 năm anh ta mua được căn hộ đó thì:
\[87,91344a = {10^9}.{\left( {1,05} \right)^5} \Leftrightarrow a = 14.517.000\] (đồng)
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247