Câu hỏi :

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

A.\[\smallint f(x)dx = {x^3}\ln 3x - \frac{{{x^3}}}{3} + C\]

B. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{9} + C\]

C. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{3} + C\]

D. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{{27}} + C\]

* Đáp án

* Hướng dẫn giải

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = ln3x}\\{dv = {x^2}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{3}{{3x}}dx}\\{v = \frac{1}{3}{x^3}}\end{array}} \right.\)

\[ \Rightarrow I = \frac{1}{3}{x^3}\ln 3x - \smallint \frac{1}{3}{x^3}.\frac{3}{{3x}}dx = \frac{1}{3}{x^3}\ln 3x - \smallint \frac{1}{3}{x^2}dx = \frac{1}{3}{x^3}\ln 3x - \frac{1}{9}{x^3} + C\]

Đáp án cần chọn là: B

Copyright © 2021 HOCTAP247