A.\[b + c = 127075\]
B. \[b + c = 127073\]
C. \[b + c = 127072\]
D. \[b + c = 127071\]
Đặt
\(\left\{ {\begin{array}{*{20}{c}}{u = ln{{(2x + 1)}^{2017}}}\\{dv = xdx}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{2017.2.{{(2x + 1)}^{2016}}}}{{{{(2x + 1)}^{2017}}}}dx = \frac{{4034}}{{2x + 1}}dx}\\{v = \frac{{{x^2}}}{2}}\end{array}} \right.\)
\(I = ln{(2x + 1)^{2017}}.\frac{{{x^2}}}{2}\left| {_0^4} \right. - \int\limits_0^4 {\frac{{{x^2}}}{2}.\frac{{4034}}{{2x + 1}}dx} \)
\[ = \ln {(2.4 + 1)^{2017}}.\frac{{{4^2}}}{2} - 0 - 2017\mathop \smallint \nolimits_0^4 \frac{{{x^2}}}{{2x + 1}}dx\]
\[ = 8\ln {9^{2017}} - 2017\mathop \smallint \nolimits_0^4 (\frac{1}{2}x - \frac{1}{4} + \frac{{\frac{1}{4}}}{{2{\rm{x}} + 1}})dx\]
\[ = 8ln{9^{2017}} - \frac{{2017}}{2}.\frac{{{x^2}}}{2}\left| {_0^4} \right. + \frac{{2017}}{4}x\left| {_0^4} \right. - \frac{{2017}}{4}\int\limits_0^4 {\frac{1}{2}.\frac{1}{{2x + 1}}d(2x + 1)} \]
\[ = 8ln{9^{2017}} - \frac{{2017}}{4}{.4^2} + \frac{{2017}}{4}4 - \frac{{2017}}{8}ln|2x + 1|\left| {_0^4} \right.\]
\[ = 8ln{9^{2017}} - 6051 - \frac{{2017}}{8}.(ln9 - ln1)\]
\[ = 8ln{9^{2017}} - 6051 - \frac{{2017}}{8}.ln9 = \frac{{127071}}{4}.ln3 - 6051\]
\[ \Rightarrow b + c = 127075\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247