A.1.
B.−1.
C.−2.
D.2.
Ta có:\[\mathop \smallint \limits_1^3 \left( {4 - x} \right)f\left( x \right)dx = 4\mathop \smallint \limits_1^3 f\left( x \right)dx - \mathop \smallint \limits_1^3 xf\left( x \right)dx\]
Đặt\[t = 4 - x \Rightarrow dt = - dx\]
Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow t = 3}\\{x = 3 \Rightarrow t = 1}\end{array}} \right.\) khi đó ta có:
\[\mathop \smallint \limits_1^3 \left( {4 - x} \right)f\left( x \right)dx = - \mathop \smallint \limits_3^1 tf\left( {4 - t} \right)dt = \mathop \smallint \limits_1^3 tf\left( {4 - t} \right)dt = \mathop \smallint \limits_1^3 tf\left( t \right)dt = \mathop \smallint \limits_1^3 xf\left( x \right)dx\]
\[\begin{array}{*{20}{l}}{ \Rightarrow \mathop \smallint \limits_1^3 xf\left( x \right)dx = 4\mathop \smallint \limits_1^3 f\left( x \right)dx - \mathop \smallint \limits_1^3 xf\left( x \right)dx}\\{ \Leftrightarrow 2\mathop \smallint \limits_1^3 f\left( x \right)dx = \mathop \smallint \limits_1^3 xf\left( x \right)dx = - 2}\end{array}\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247