Cho z 1 = 2 + i ; z 2 = 1 − 3 i . . Tính A = | z 1 | 2 + | z 2 | 2 .

Câu hỏi :

Cho \[{z_1} = 2 + i;\,\,{z_2} = 1 - 3i.\]. Tính \[A = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\]

A.\(\sqrt {15} \)

B.3

C.4

D.15

* Đáp án

* Hướng dẫn giải

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{{z_1} = 2 + i}\\{{z_2} = 1 - 3i}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{|{z_1}{|^2} = {2^2} + 1 = 5}\\{|{z_2}{|^2} = 1 + {{( - 3)}^2} = 10}\end{array} \Rightarrow {{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2} = 15.} \right.\)

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Số phức, các phép toán với số phức !!

Số câu hỏi: 44

Copyright © 2021 HOCTAP247