A.2
B.4
C.1
D.3
+) Đặt \[z = a + bi \Rightarrow - z = - a - bi.\]
Ta có:\[\left| z \right| = \sqrt {{a^2} + {b^2}} ,\,\,\left| { - z} \right| = \sqrt {{{\left( { - a} \right)}^2} + {{\left( { - b} \right)}^2}} \Rightarrow \left| z \right| = \left| { - z} \right|\] là mệnh đề đúng.
+) Đặt \[z = a + bi \Rightarrow \bar z = a - bi.\]
Ta có:\[\left| z \right| = \sqrt {{a^2} + {b^2}} ,\,\,\left| {\bar z} \right| = \sqrt {{a^2} + {{\left( { - b} \right)}^2}} \Rightarrow \left| z \right| = \left| {\bar z} \right|\] là mệnh đề đúng.
+) Đặt\[z = a + bi \Rightarrow \bar z = a - bi \Rightarrow z + \bar z = 2a\]
\[ \Rightarrow \left| {z + \bar z} \right| = \left| {2a} \right| \Rightarrow \left| {z + \bar z} \right| = 0\]là mệnh đề sai.
+) Đặt\[z = a + bi \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} \ge 0 \Rightarrow \left| z \right| > 0\]là mệnh đề sai.
Vậy có 2 mệnh đề đúng.
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247