A.\[\sqrt 5 \]
B. \[\sqrt {10} \]
c. 1
D. \(\sqrt 2 \)
Ta có
\[\begin{array}{*{20}{l}}{\frac{{3 - 4i}}{z} = \frac{{\left( {2 + 3i} \right)\bar z}}{{{{\left| z \right|}^2}}} + 2 + i}\\{ \Leftrightarrow \frac{{3 - 4i}}{z} = \frac{{\left( {2 + 3i} \right)\bar z}}{{z.\bar z}} + 2 + i}\\{ \Leftrightarrow \frac{{3 - 4i}}{z} = \frac{{2 + 3i}}{z} + 2 + i}\\{ \Leftrightarrow 3 - 4i = 2 + 3i + \left( {2 + i} \right).z}\\{ \Leftrightarrow \left( {2 + i} \right).z = 1 - 7i}\\{ \Leftrightarrow z = \frac{{1 - 7i}}{{2 + i}} = - 1 - 3i}\end{array}\]
Vậy\[\left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2}} = \sqrt {10} .\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247