Tính tổng phần thực của tất cả các số phức

Câu hỏi :

Tính tổng phần thực của tất cả các số phức \[z \ne 0\] thỏa mãn \[\left( {z + \frac{5}{{|z|}}} \right)i = 7 - z.\]

A.−2                                                 

B.−3                                                 

C.3                                                     

D.2

* Đáp án

* Hướng dẫn giải

Theo bài ra ta có:

\[\left( {z + \frac{5}{{|z|}}} \right)i = 7 - z. \Leftrightarrow zi + \frac{{5i}}{{|z|}} = 7 - z \Leftrightarrow z(i + 1) = 7 - \frac{{5i}}{{|z|}}\]

\[ \Leftrightarrow 2|z{|^2} = 49 + \frac{{25}}{{|z{|^2}}} \Leftrightarrow 2|z{|^4} - 49|z{|^2} - 25 = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{|z{|^2} = 25(tm)}\\{|z| = - \frac{1}{2}(ktm)}\end{array}} \right. \Leftrightarrow |z| = 5(Do|z| > 0)\)

Thay\[\left| z \right| = 5\]vào biểu thức đề bài ta có:

\[\left( {z + 1} \right)i = 7 - z \Leftrightarrow z\left( {i + 1} \right) = 7 - i \Leftrightarrow z = \frac{{7 - i}}{{i + 1}} = 3 - 4i\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Số phức, các phép toán với số phức !!

Số câu hỏi: 44

Copyright © 2021 HOCTAP247