A.Một đường thẳng.
B.Một đường Parabol.
C.Một đường Elip.
D.Một đường tròn.
Đặt
\[\begin{array}{*{20}{l}}{z = a + bi;a,b \in R;{i^2} = - 1}\\{ \Rightarrow z - i = a + \left( {b - 1} \right)i}\\{ \Rightarrow z - \bar z + 2i = \left( {2 + 2b} \right)i}\\{ \Rightarrow \left| {z - \bar z + 2i} \right| = 2\left| {z - i} \right| \Leftrightarrow \sqrt {{{\left( {2 + 2b} \right)}^2}} = 2\sqrt {{a^2} + {{\left( {b - 1} \right)}^2}} }\\{ \Leftrightarrow 4{a^2} - 16b = 0 \Leftrightarrow b = \frac{1}{4}{a^2}}\end{array}\]
Tập hợp các điểm biểu diễn số phức là đường parabol
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247