Trên mặt phẳng tọa độ Oxy, gọi M là điểm biểu diễn hình học của số phức

Câu hỏi :

Trên mặt phẳng tọa độ Oxy, gọi M là điểm biểu diễn hình học của số phức \[z = - 1 + 2i\;\] và \[\alpha \] là góc lượng giác có tia đầu Ox, tia cuối OM. Tính \[tan2\alpha .\]

A.\[ - \frac{3}{4}\]

B. -1

C. \[ - \frac{4}{3}\]

D. \[\frac{4}{3}\]

* Đáp án

* Hướng dẫn giải

Ta có:\[z = - 1 + 2i\] có điểm biểu diễn là\[M\left( { - 1;\,\,2} \right).\]

Trên mặt phẳng tọa độ Oxy, gọi M là điểm biểu diễn hình học của số phức  (ảnh 1)

 

Ta có:\[\tan AOM = \frac{{AM}}{{OA}} = \frac{2}{1} = 2.\]

\[ \Rightarrow \tan \alpha = - \tan AOM = - 2\] (hai góc bù nhau)

\[ \Rightarrow \tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} = \frac{{2.\left( { - 2} \right)}}{{1 - {{\left( { - 2} \right)}^2}}} = \frac{4}{3}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về điểm biểu diễn số phức trong mặt !!

Số câu hỏi: 34

Copyright © 2021 HOCTAP247