Bước 1: Biểu diễn z theo w.
\[w = \left( {3 + 4i} \right)z + 2 + i \Leftrightarrow \left( {3 + 4i} \right)z = w - 2 - i \Leftrightarrow z = \frac{{w - 2 - i}}{{3 + 4i}}\]
Bước 2: Biến đổi phương trình ban đầu thành dạng \[\left| {w\left( {a + bi} \right)} \right| = R\]
Theo bài ra ta có:
\[\begin{array}{*{20}{l}}{\left| {z + i} \right| = 1 \Leftrightarrow \left| {\frac{{w - 2 - i}}{{3 + 4i}} + i} \right| = 1 \Leftrightarrow \left| {\frac{{w - 2 - i + 3i - 4}}{{3 + 4i}}} \right| = 1}\\{ \Leftrightarrow \frac{{\left| {w - 6 + 2i} \right|}}{{\left| {3 + 4i} \right|}} = 1 \Leftrightarrow \left| {w - \left( {6 - 2i} \right)} \right| = 5}\end{array}\]
=> Tập hợp các điểm biểu diễn số phức w là đường tròn tâm I(6;−2) bán kính R=5.
Vậy a−b=8
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247