A.\[\frac{{{a^3}\sqrt 6 }}{2}\]
B. \[\frac{{{a^3}\sqrt 6 }}{4}\]
C. \[\frac{{{a^3}\sqrt 6 }}{8}\]
D. \[\frac{{3{a^3}\sqrt 6 }}{8}\]
Ta có:\[SA \bot \left( {ABCD} \right) \Rightarrow AC\] là hình chiếu của SC trên
\[\left( {ABCD} \right) \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = {60^0}\]
\[SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow {\rm{\Delta }}SAC\]vuông tại A và\[\widehat {SCA} = {60^0}\]
Xét tam giác vuông SAC có:
\[SA = AC.\tan 60 = a\sqrt 2 .\sqrt 3 = a\sqrt 6 ;\,SC = \frac{{AC}}{{{\rm{cos}}60}} = \frac{{a\sqrt 2 }}{{\frac{1}{2}}} = 2a\sqrt 2 \]
Áp dụng hệ thức lượng trong tam giác vuông SAC có:
\[A{C^2} = HC.SC \Rightarrow \frac{{HC}}{{SC}} = \frac{{A{C^2}}}{{S{C^2}}} = \frac{{2{a^2}}}{{8{a^2}}} = \frac{1}{4}\]
Trong (SAC) kẻ\[HK//SA \Rightarrow HK \bot \left( {ABCD} \right)\]
Ta có:\[\frac{{HK}}{{SA}} = \frac{{HC}}{{SC}} = \frac{1}{4} \Rightarrow HK = \frac{1}{4}SA = \frac{{a\sqrt 6 }}{4}\]
Vậy\[{V_{H.ABCD}} = \frac{1}{3}HK.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 6 }}{4}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 6 }}{8}\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247