A.\[k = \frac{{ - 1 + \sqrt 3 }}{2}\]
B. \[k = \frac{{ - 1 + \sqrt 5 }}{2}\]
C. \[k = \frac{{ - 1 + \sqrt 2 }}{2}\]
D. \[k = \frac{{1 + \sqrt 5 }}{4}\]
Vì\[BC//AD\]nên mặt phẳng (BMC) cắt (SAD) theo đoạn thẳng\[MN//AD\left( {N \in SD} \right)\]
Vì\[MN//AD \Rightarrow \frac{{SM}}{{SA}} = \frac{{SN}}{{SD}} = k\]
\[\begin{array}{*{20}{l}}{\frac{{{V_{S.MBC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}} = k \Rightarrow {V_{S.MBC}} = k.{V_{S.ABC}} = \frac{k}{2}.{V_{S.ABCD}}}\\{\frac{{{V_{S.MNC}}}}{{{V_{S.ADC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SD}} = {k^2} \Rightarrow {V_{S.MNC}} = {k^2}.{V_{S.ADC}} = \frac{{{k^2}}}{2}.{V_{S.ABCD}}}\\{ \Rightarrow {V_{S.MBCN}} = {V_{S.MBC}} + {V_{S.MNC}} = \left( {\frac{k}{2} + \frac{{{k^2}}}{2}} \right){V_{S.ABCD}}}\end{array}\]
Để mặt phẳng (BMNC) chia hình chóp thành 2 phần có thể tích bằng nhau thì
\[\frac{k}{2} + \frac{{{k^2}}}{2} = \frac{1}{2} \Leftrightarrow {k^2} + k - 1 = 0 \Leftrightarrow k = \frac{{ - 1 + \sqrt 5 }}{2}\]do k > 0.
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247