Trang chủ Đề thi & kiểm tra Khác Thể tích của khối chóp !! Cho hình chóp S.ABCD có đáy ABCD là hình bình...

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD thành hai ph...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD  thành hai phần, phần chứa đỉnh S có thể tích bằng \[\frac{7}{{25}}\] lần phần còn lại. Tính tỉ số \[\frac{{IA}}{{IS}}\]?

A.\[\frac{5}{3}\]

B. \[\frac{2}{3}\]

C. \[\frac{3}{2}\]

D. \[\frac{3}{5}\]

* Đáp án

* Hướng dẫn giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD  thành hai phần, phần c (ảnh 1)

Giả sử\[SC \cap \left( {IMN} \right) = \left\{ P \right\} \Rightarrow \left( {IMN} \right) \cap \left( {SAC} \right) = IP\]

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{(IMN) \cap (SAC) = IP}\\{(IMN) \cap (ABCD) = MN}\\{(SAC) \cap (ABCD) = AC}\end{array}} \right. \Rightarrow IP\parallel MN\parallel AC\)

Trong (ABCD) gọi \[\left\{ E \right\} = MN \cap CD\]trong (SCD) gọi \[Q = NP \cap SD\]

Khi đó thiết diện của hình chóp cắt bởi (MNI) là ngũ giác IMNPQ.

Gọi\[SM \cap \left( {ABCD} \right) = E \Rightarrow \frac{{d\left( {M;\left( {ABCD} \right)} \right)}}{{d\left( {S;\left( {ABCD} \right)} \right)}} = \frac{{ME}}{{SE}} = \frac{{11}}{{35}}\]theo bài ra ta có\[\frac{{{V_2}}}{{{V_1}}} = \frac{{{V_{M.ACD}}}}{{{V_{S.ABCD}}}} = \frac{{\frac{1}{3}.d\left( {M;\left( {ABCD} \right)} \right).{S_{ACD}}}}{{\frac{1}{3}.d\left( {S;\left( {ABCD} \right)} \right).{S_{ABCD}}}} = \frac{{11}}{{35}}.\frac{1}{2} = \frac{{11}}{{70}}\]

Ta có \[{V_1} = {V_{S.BMN}} + {V_{S.IMN}} + {V_{S.INP}} + {V_{S.IPQ}}\]

Đặt\[\frac{{SI}}{{SA}} = x\,\,\,(0 < x < 1)\]áp dụng định lí Ta-lét ta có\[\frac{{SI}}{{SA}} = \frac{{SP}}{{SC}} = x\]

- Xét khối chóp S.BMN và S.ABCD:

  + Có cùng chiều cao (cùng bằng khoảng cách từ SS đến (ABCD).

\[{S_{BMN}} = \frac{1}{4}{S_{ABC}} = \frac{1}{8}{S_{ABC}}\](do tam giác BMNBMN và tam giác BACBAC đồng dạng theo tỉ số\[DH \bot \left( {ABC} \right)\])

Do đó\[{V_{S.BMN}} = \frac{1}{8}{V_{S.ABCD}} = \frac{1}{8}V\]

- Xét khối chóp S.IMN và S.AMN:

\[\frac{{{V_{S.IMN}}}}{{{V_{S.AMN}}}} = \frac{{SI}}{{SA}} = x \Rightarrow {V_{S.IMN}} = x.{V_{S.AMN}}\]

Ta có\[{S_{AMN}} = {S_{BMN}} = \frac{1}{8}{S_{ABCD}} \Rightarrow {V_{S.AMN}} = \frac{1}{8}V \Rightarrow {V_{S.IMN}} = \frac{x}{8}V\]

- Xét khối chóp S.INP và S.ANC:

\[\frac{{{V_{S.INP}}}}{{{V_{S.ANC}}}} = \frac{{SI}}{{SA}}.\frac{{SP}}{{SC}} = {x^2} \Rightarrow {V_{S.IMN}} = {x^2}.{V_{S.ANC}}\]

Ta có\[{S_{ANC}} = \frac{1}{2}{S_{ABC}} = \frac{1}{4}{S_{ABCD}} \Rightarrow {V_{S.ANC}} = \frac{1}{4}V \Rightarrow {V_{S.IMN}} = \frac{{{x^2}}}{4}V\]

- Xét khối chóp S.IPQ và S.ACD:\[\frac{{{V_{S.IPQ}}}}{{{V_{S.ACD}}}} = \frac{{SI}}{{SA}}.\frac{{SP}}{{SC}}.\frac{{SQ}}{{SD}}\]

Ta có AMEC là hình bình hành nên\[EC = AM = \frac{1}{2}CD \Rightarrow \frac{{EC}}{{ED}} = \frac{1}{3}\]

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến EPQ ta có:

\[\frac{{PS}}{{PC}}.\frac{{EC}}{{ED}}.\frac{{QD}}{{QS}} = 1 \Rightarrow \frac{x}{{1 - x}}.\frac{1}{3}.\frac{{QD}}{{QS}} = 1\]

\[\begin{array}{*{20}{l}}{ \Rightarrow \frac{{QD}}{{QS}} = \frac{{3\left( {1 - x} \right)}}{x} \Rightarrow \frac{{SQ}}{{QD}} = \frac{x}{{3\left( {1 - x} \right)}}}\\{ \Rightarrow \frac{{SQ}}{{SQ + QD}} = \frac{x}{{x + 3\left( {1 - x} \right)}}}\\{ \Rightarrow \frac{{SQ}}{{SD}} = \frac{x}{{3 - 2x}}}\end{array}\]

Suy ra\[\frac{{{V_{S.IPQ}}}}{{{V_{S.ACD}}}} = \frac{{SI}}{{SA}}.\frac{{SP}}{{SC}}.\frac{{SQ}}{{SD}} = {x^2}.\frac{x}{{3 - 2x}} = \frac{{{x^3}}}{{3 - 2x}}\]

\[ \Rightarrow {V_{S.IPQ}} = \frac{{{x^3}}}{{3 - 2x}}{V_{S.ACD}}\]

Mà\[{S_{ACD}} = \frac{1}{2}{S_{ABCD}} \Rightarrow {V_{S.ACD}} = \frac{1}{2}V \Rightarrow {V_{S.IPQ}} = \frac{{{x^3}}}{{2\left( {3 - 2x} \right)}}V\]

Khi đó ta có:

\[{V_1} = {V_{S.BMN}} + {V_{S.IMN}} + {V_{S.INP}} + {V_{S.IPQ}}\]

\[ \Rightarrow {V_1} = \frac{1}{8}V + \frac{x}{8}V + \frac{{{x^2}}}{4}V + \frac{{{x^3}}}{{2(3 - 2x)}}V\]

\[\begin{array}{l} \Rightarrow {V_1} = \left( {\frac{1}{8} + \frac{x}{8} + \frac{{{x^2}}}{4} + \frac{{{x^3}}}{{2(3 - 2x)}}} \right)V = \frac{7}{{32}}V\\ \Rightarrow \frac{1}{8} + \frac{x}{8} + \frac{{{x^2}}}{4} + \frac{{{x^3}}}{{2(3 - 2x)}} = \frac{7}{{32}}\\ \Leftrightarrow \frac{{1 + x + 2x2}}{4} + \frac{{{x^3}}}{{3 - 2x}} = \frac{7}{{16}}\\ \Leftrightarrow (1 + x + 2{x^2}).(12 - 8x) + 16{x^3} = 7(3 - 2x)\\ \Leftrightarrow 12 + 12x + 24{x^2} - 8x - 8{x^2} - 16{x^3} + 16{x^3} = 21 - 14x\\ \Leftrightarrow 16{x^2} + 18x - 9 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{3}{8}\left( {tm} \right)}\\{x = - \frac{3}{2}\left( {ktm} \right)}\end{array}} \right.\end{array}\]

\[ \Rightarrow \frac{{SI}}{{SA}} = \frac{3}{8} \Rightarrow \frac{{IS}}{{IA}} = \frac{3}{5} \Rightarrow \frac{{IA}}{{IS}} = \frac{5}{3}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thể tích của khối chóp !!

Số câu hỏi: 33

Copyright © 2021 HOCTAP247