Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng \(\sqrt 6 \). Biết rằng các mặt bên của hình chóp có diện tích bằng nhau và một trong các cạnh bên bằng \(3\sqrt 2 \). Tính thể tích nhỏ nhất của khối chóp S.ABC

A.3

B.\[2\sqrt 2 \]

C. \[2\sqrt 3 \]

D. 4

* Đáp án

* Hướng dẫn giải

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng (ảnh 1)

Gọi M,N,P lần lượt là hình chiếu của điểm SS lên AB,BC,AC ta có:

\[\begin{array}{*{20}{l}}{\,\,\,\,\,{S_{{\rm{\Delta }}ABC}} = {S_{{\rm{\Delta }}BCA}} = {S_{{\rm{\Delta }}CAB}}}\\{ \Rightarrow \frac{1}{2}SM.AB = \frac{1}{2}SN.BC = \frac{1}{2}SP.CA}\end{array}\]

Mà\[AB = BC = CA\,\,\left( {gt} \right) \Rightarrow SM = SN = SP\]

Gọi O là hình chiếu của S lên (ABC), ta có:

\(\left\{ {\begin{array}{*{20}{c}}{AB \bot SM}\\{AB \bot SO}\end{array}} \right. \Rightarrow AB \bot (SOM) \Rightarrow AB \bot OM\)

CMTT ta có\[ON \bot BC,\,\,OP \bot AC\]

Xét các tam giác vuông\[{\rm{\Delta }}SOM,\,\,{\rm{\Delta }}SON,\,\,{\rm{\Delta }}SOP\]có:

\[\begin{array}{*{20}{l}}{SO\,\,chung}\\{SM = SN = SP\,\,\left( {cmt} \right)}\end{array}\]

\[ \Rightarrow {\rm{\Delta }}SOM = {\rm{\Delta }}SON = {\rm{\Delta }}SOP\](cạnh huyền – cạnh góc vuông)

\[ \Rightarrow OM = ON = OP\] suy ra O cách đều các cạnh AB,BC,CA nên OO là tâm đường tròn nội tiếp \[{\rm{\Delta }}ABC\]hoặc O là tâm đường tròn bàng tiếp\[{\rm{\Delta }}ABC\]

+ TH1: O là tâm đường tròn nội tiếp\[{\rm{\Delta }}ABC\] Mà\[{\rm{\Delta }}ABC\]đều nên O là đồng thời là trọng tâm tam giác đều ABC. Khi đó ta có

\[AN = \frac{{\sqrt 6 .\sqrt 3 }}{2} = \frac{{3\sqrt 2 }}{2},\,\,AO = \frac{2}{3}AN = \sqrt 2 \]

\[ \Rightarrow SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {18 - 2} = 4\]

\[{S_{{\rm{\Delta }}ABC}} = {\left( {\sqrt 6 } \right)^2}.\frac{{\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}\]

\[ \Rightarrow {V_{S.ABC}} = \frac{1}{3}SO.{S_{{\rm{\Delta }}ABC}} = \frac{1}{3}.4.\frac{{3\sqrt 3 }}{2} = 2\sqrt 3 \]

TH2: O là tâm đường tròn bàng tiếp \[\Delta ABC\].

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng (ảnh 2)

Gọi R là bán kính đường tròn bàng tiếp tam giác ABC, p là nửa chu vi tam giác ABC

\[ \Rightarrow p = \frac{{3\sqrt 6 }}{2}\]

Khi đó ta có\[{S_{ABC}} = \left( {p - BC} \right).R\]

\[ \Rightarrow {\left( {\sqrt 6 } \right)^2}.\frac{{\sqrt 3 }}{4} = \left( {\frac{{3\sqrt 6 }}{2} - \sqrt 6 } \right).R \Leftrightarrow R = \frac{{3\sqrt 2 }}{2}\]

Có\[AN = \frac{{\sqrt 6 .\sqrt 3 }}{2} = \frac{{3\sqrt 2 }}{2} \Rightarrow OA = AN + ON = 3\sqrt 2 \]

\[ \Rightarrow SA > OA = 3\sqrt 2 \] (quan hệ giữa đường vuông góc và đường xiên)

\[ \Rightarrow SB = 3\sqrt 2 \]

Áp dụng định lí Pytago trong tam giác vuông OBM có:

\[OB = \sqrt {O{M^2} + B{M^2}} = \sqrt {{{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 6 }}{2}} \right)}^2}} = \sqrt 6 \]

Áp dụng định lí Pytago trong tam giác vuông SOB có:

\[SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {{{\left( {3\sqrt 2 } \right)}^2} - {{\left( {\sqrt 6 } \right)}^2}} = 2\sqrt 3 \]

Khi đó ta có\[{V_{S.ABC}} = \frac{1}{3}.SO.{S_{ABC}} = \frac{1}{3}.2\sqrt 3 .{\left( {\sqrt 6 } \right)^2}.\frac{{\sqrt 3 }}{4} = 3\]

Vậy\[\min {V_{S.ABC}} = 3\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thể tích của khối chóp !!

Số câu hỏi: 33

Copyright © 2021 HOCTAP247