Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng 4 và tạo với đáy góc 600. Thể tích của khối chóp đó là:
A.16
B. \[8\sqrt 3 \]
C. \[48\sqrt 3 \]
D. \[16\sqrt 3 \]
Xét tam giác ABC, giả sử \[AB = 6,\,\,BC = 8,\,\,AC = 10\] ta có\[A{B^2} + B{C^2} = A{C^2}\,\,\left( { = 100} \right)\] nên tam giác ABC vuông tại B (định lí Pytago đảo)
\[ \Rightarrow {S_{{\rm{\Delta }}ABC}} = \frac{1}{2}AB.BC = \frac{1}{2}.6.8 = 24\]
Gọi H là hình chiếu vuông góc của S lên (ABC) và giả sử SA hợp với đáy góc 600 ⇒HA là hình chiếu của SA lên (ABC) nên
\[\angle \left( {SA;\left( {ABC} \right)} \right) = \angle \left( {SA;HA} \right) = \angle SAH = {60^0}\]
\[ \Rightarrow SH = SA.\sin {60^0} = 4.\frac{{\sqrt 3 }}{2} = 2\sqrt 3 \]
Vậy\[{V_{S.ABC}} = \frac{1}{3}SH.{S_{{\rm{\Delta }}ABC}} = \frac{1}{3}.2\sqrt 3 .24 = 16\sqrt 3 \]
Đáp án cần chọn là: DCâu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247