A.\[{(x - 2)^2} + {y^2} + {z^2} = 4\]
B. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 2\]
C. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
D. \[{(x + 2)^2} + {(y + 1)^2} + {z^2} = 4\]
Lấy\[{\rm{A}} \in {\rm{d}} \Rightarrow {\rm{A}}\left( {2a;a;4} \right)\] và\[B \in d' \Rightarrow B\left( {b;3 - b;0} \right)\].
Ta có:\[\overrightarrow {AB} = \left( {b - 2a;3 - a - b; - 4} \right)\]
AB là đoạn vuông góc chung của hai đường thẳng d và d′ khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {{u_d}} = 0}\\{\overrightarrow {AB} .\overrightarrow {{u_{d'}}} = 0}\end{array}} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2.(b - 2a) + 1.(3 - a - b) + 0.( - 4) = 0}\\{1.(b - 2a) - 1.(3 - a - b) + 0.( - 4) = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 5a + b + 3 = 0}\\{ - a + 2b - 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 2}\end{array}} \right.\end{array}\)
Suy ra \[{\rm{A}}\left( {2;1;4} \right);B\left( {2;1;0} \right)\] và\[\overrightarrow {AB} = \left( {0;0; - 4} \right)\]
Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′
Có tâm I là trung điểm của AB và bán kính\[R = \frac{{AB}}{2}\]
Ta có I(2;1;2) và \[R = \frac{{AB}}{2} = \frac{4}{2} = 2\]
Vậy ta có\[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247