A.R=4
B.R=2
C.R=±1
D.R=1
A.\(5\sqrt 2 \)
B. \[10\sqrt 2 \]
C. \[2\sqrt 5 \]
D. \[4\sqrt 5 \]
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24\]
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24\]
A.\[{x^2} + {y^2} + {z^2} + x + y + z - 6 = 0\]
B. \[{x^2} + {y^2} + {z^2} + 2x - 4y + 2z - 3 = 0\]
C. \[{x^2} + {y^2} + {z^2} - 2x + 3y + 5z + 3 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 7x - 2z + 6 = 0\]
A.\[{x^2} + {y^2} + {z^2} + 4x - 8y + 2z + 2 = 0\]
B. \[{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 2 = 0\]
C. \[{x^2} + {y^2} + {z^2} + x - 2y + z + 1 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 2x + 4y + 4z + 4 = 0\]
A.\[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]
B. Trục Ox
C.TrụcOy
D.Trục Oz
A.\[AB = \frac{{\sqrt {126} }}{7}\]
B. \[AB = \frac{{\sqrt {123} }}{7}\]
C. \[AB = \sqrt {\frac{{126}}{7}} \]
D. \[AB = \frac{{\sqrt {129} }}{7}\]
A.\[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 9\]
B. \[{(x + 3)^2} + {(y - 2)^2} + {z^2} = 25\]
C. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 64\]
D. \[{(x - 3)^2} + {(y + 2)^2} + {z^2} = 25\]
A.\[{(x - 2)^2} + {y^2} + {z^2} = 4\]
B. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 2\]
C. \[{(x - 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
D. \[{(x + 2)^2} + {(y + 1)^2} + {z^2} = 4\]
A.\[{(x - 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
B. \[{(x - 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]
C. \[{(x + 1)^2} + {(y + 1)^2} + {(z - 2)^2} = 4\]
D. \[{(x + 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 4\]
A.4 mặt cầu
B.2 mặt cầu.
C.1 mặt cầu.
D.Vô số mặt cầu
A.\[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 2.\]
B. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 9.\]
C. \[{(x - 2)^2} + {y^2} + {(z - 1)^2} = 4.\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 24.\]
A.\[{x^2} + {(y - 3)^2} + {(z - 1)^2} = 20\]
B. \[{x^2} + {(y + 1)^2} + {(z + 2)^2} = 5\]
C. \[{(x - 2)^2} + {(y - 1)^2} + {(z + 3)^2} = 20\]
D. \[{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 14\]
A.I(1;−2;2),I(5;2;10)
B.I(1;−2;2),I(0;3;0)
C.I(5;2;10),I(0;−3;0)
D.I(1;−2;2),I(−1;2;−2)
A.\[2x - 2y + z - 2 = 0\] và\[2x - 2y + z + 16 = 0\]
B. \[2x - 2y + z + 2 = 0\] và\[2x - 2y + z - 16 = 0\]
C. \[2x - 2y - 3\sqrt 8 + 6 = 0\] và\[2x - 2y - 3\sqrt 8 - 6 = 0\]
D. \[2x - 2y + 3\sqrt 8 - 6 = 0\] và\[2x - 2y - 3\sqrt 8 - 6 = 0\]
A.\[{(x + 3)^2} + {(y + 1)^2} + {(z - 3)^2} = {\rm{\;}}\frac{4}{9}\]
B. \[{(x - 3)^2} + {(y + 1)^2} + {(z + 3)^2} = \frac{4}{9}\]
C. \[{(x + 3)^2} + {(y + 1)^2} + {(z + 3)^2} = \frac{4}{9}\]
D. \[{(x - 3)^2} + {(y - 1)^2} + {(z + 3)^2} = \frac{4}{9}\]
A. \[(S):{(x + 2)^2} + {(y + 4)^2} + {(z + 3)^2} = \frac{2}{7}\]
B. \[(S):{(x - 2)^2} + {(y - 4)^2} + {(z - 3)^2} = \frac{9}{{14}}\]
C. \[(S):{(x - 2)^2} + {(y - 4)^2} + {(z - 3)^2} = \frac{2}{7}\]
D. \[(S):{(x + 2)^2} + {(y + 4)^2} + {(z + 3)^2} = \frac{9}{{14}}\]
A.\[\sqrt {110} \]
B. \[3\sqrt {10} \]
C. \[\frac{{3\sqrt {10} }}{5}\]
D. \[\frac{{\sqrt {110} }}{5}\]
A.\(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 9t}\\{y = 1 + 9t}\\{z = 3 + 8t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - 5t}\\{y = 1 + 3t}\\{z = 3}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = 1 - t}\\{z = 3}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 4t}\\{y = 1 + 3t}\\{z = 3 - 3t}\end{array}} \right.\)
A.\[2\sqrt 6 \]
B. \[2\sqrt 3 \]
C. \[\sqrt 3 \]
D. \[\sqrt 6 \]
A.\[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 25.\]
B. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 4.\]
C. \[\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 2} \right)^2} = 20.\]
D. \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 2} \right)^2} = 5.\]
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247