Giải phương trình cos3xtan5x = sin7x A. x = npi/2; x= pi/20 + kpi/13 (k, n thuộc Z)

Câu hỏi :

Giải phương trình cos3xtan5x=sin7x

A. x=nπ2;x=π20+kπ13k,nZ

B. x=nπ;x=π20+kπ10k,nZ

C. x=nπ;x=3π5+2kπ7k,nZ

D. x=nπ;x=3π5+7kπ13k,nZ

* Đáp án

* Hướng dẫn giải

ĐKXĐ: cos5x0

5xπ2+mπ

xπ10+mπ5mZ

cos3xtan5x=sin7x

cos3xsin5x=sin7xcos5x

12sin8x+sin2x=12sin12x+sin2x

sin8x+sin2x=sin12x+sin2x

sin12x=sin8x

12x=8x+k2π12x=π8x+k2π

x=kπ2x=π20+kπ10kZ

 

Đối chiếu điều kiện ta có:

kπ2π10+mπ5k,mZ

5k1+2m

k1+2m5

Do kϵZ nên: k=1+2m51+2m5 là số nguyên.

Mà 1 + 2m luôn lẻ nên 1+2m5không chia hết cho 2 với mọi m.

Do đó, nếu k1+2m5thì k phải là số nguyên chẵn.

⇒k chẵn, đặt k = 2n, khi đó ta có x=2nπ2=nπnZ

π20+kπ10π10+mπ5k,mZ

1+2k2+4m

Vì 1 + 2k lẻ, 2 + 4m chẵn nên 1 + 2k ≠ 2 + 4m luôn đúng với mọi k, m ∈ Z.

Vậy nghiệm của phương trình đã cho là:

x=nπ;x=π20+kπ10k,nZ

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình lượng giác thường gặp !!

Số câu hỏi: 61

Copyright © 2021 HOCTAP247