Với mọi số nguyên dương n, tổng 2 + 5 + 8 + … + (3n – 1) là:

Câu hỏi :

Với mọi số nguyên dương n, tổng 2 + 5 + 8 + … + (3n – 1) là:

A.n3n+12

B. n3n12

C. n3n+22

D. 3n22

* Đáp án

* Hướng dẫn giải

Trả lời:

Gọi Sn = 2 + 5 + 8 + … + (3n − 1)

Với n = 1 ta có: S1 = 2 , ta loại được các đáp án B, C và D.

Ta chứng minh:

Sn=2+5+8+...+3n1=n3n+12*

đúng với mọi số nguyên dương nn bằng phương pháp quy nạp toán học.

Giả sử (*) đúng đến n = k (k ≥ 1), tức là

Sk=2+5+8+...+3k1=k3k+12

Ta cần chứng minh (*) đúng đến n = k + 1, tức là cần chứng minh

Sk+1 = 2 + 5 + 8 + … + (3(k + 1) − 1)

=k+13k+1+12

=k+13k+42

 

Ta có:

Sk+1 = 2 + 5 + 8 + … + (3(k + 1) − 1)

= 2 + 5 + 8 + … + (3k − 1) + (3k + 2)

=k3k+12+3k+2

=3k2+k+6k+42

 

=k+13k+42

Do đó (*) đúng đến n = k + 1 .

Vậy Sn=2+5+8+...+3n1=n3n+12đúng với mọi số nguyên dương n.

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương pháp quy nạp toán học và dãy số !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247