A. \(18\sqrt{5} cm^2\)
B. \(9\sqrt{5} cm^2\)
C. \(6\sqrt{3} cm^2\)
D. \(18\sqrt{3} cm^2\)
A
Công thức tính diện tích hình thang: \(S = \frac{h (AB + MN)}{2}\)
Do AMNB là hình thang cân và cạnh MN bị giới hạn sao cho chứa 5 cực đại giao thoa, nên để diện tích hình thang lớn nhất thì h phải lớn nhất → M và N phải nằm trên các vân cực đại bậc 2 như hình vẽ
Gọi P, Q là hình chiếu của M, N lên AB \(\rightarrow \Delta AMP\) và \(\Delta BMP\) là tam giác vuông
\(\rightarrow AM = \sqrt{MP^2 + AP^2} =\sqrt{h^2 + 2^2}\)
và \(BM = \sqrt{MP^2 + BP^2} = \sqrt{h^2 + 6}\)
Vì M nằm trên vân cực đại bậc 2, nên theo điều kiện cực đại giao thoa thì:
\(d_2 - d_1 = 2 \lambda \Rightarrow BM - AM = 2 \Leftrightarrow \sqrt{h^2 + 6^2} - \sqrt{h^2 + 2^2} = 2\)
\(\Leftrightarrow \sqrt{h^2 + 6^2} = 2 + \sqrt{h^2 + 2^2}\Rightarrow h^2 + 6^2 = 4 + 4\sqrt{h^2 + 2^2 } + h^2 + 2^2\)\(\Leftrightarrow \sqrt{h^2 + 2^2} = 7 \Rightarrow h = 3\sqrt{5}cm\)
\(\Leftrightarrow S = \frac{3\sqrt{5}(8+ 4)}{2}= 18\sqrt{5}cm^2\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247