A. 100 W.
B. 80 W.
C. 20 W.
D. 60 W.
C
Ta có:
\(\begin{array}{l} \tan \left( {{\varphi _{MB}} - \varphi } \right) = \frac{{\tan {\varphi _{MB}} - \tan \varphi }}{{1 + \tan {\varphi _{MB}}\tan \varphi }} = \frac{{\frac{{{Z_L}}}{r} - \frac{{{Z_L}}}{{R + r}}}}{{1 - \frac{{{Z_L}}}{r}\frac{{{Z_L}}}{{R + r}}}} = \frac{{\frac{{{Z_L}}}{{\left( {100} \right)}} - \frac{{{Z_L}}}{{\left( {300} \right) + \left( {100} \right)}}}}{{1 - \frac{{{Z_L}}}{{\left( {100} \right)}}\frac{{{Z_L}}}{{\left( {300} \right) + \left( {100} \right)}}}} = \frac{{300{Z_L}}}{{40000 + Z_L^2}}\\ {\left( {{\varphi _{MB}} - \varphi } \right)_{max}} \Rightarrow {\left[ {\tan \left( {{\varphi _{MB}} - \varphi } \right)} \right]_{max}} \Rightarrow {Z_L} = \sqrt {\left( {40000} \right)} = 200\Omega \\ {P_{MB}} = \frac{{{U^2}}}{{{{\left( {R + r} \right)}^2} + Z_L^2}}r = \frac{{{{\left( {200} \right)}^2}}}{{{{\left[ {\left( {300} \right) + \left( {100} \right)} \right]}^2} + {{\left( {200} \right)}^2}}}\left( {100} \right) = 20{\rm{W}} \end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247