Cho hai dao động điều hòa cùng phương

Câu hỏi :

Cho hai dao động điều hòa cùng phương với các phương trình lần lượt là  \({x_1} = {A_1}\cos \left( {\omega t + \frac{\pi }{3}} \right)cm;{x_2} = {A_2}\cos \left( {\omega t - \frac{\pi }{2}} \right)\) cm. Dao động tổng hợp của hai dao động này có phương trình là x = 5cos(ωt + φ)cm. Giá trị cực đại của (A1 +A2) gần giá trị nào nhất sau đây?

A. 4 cm

B. 19 cm

C. 9 cm

D. 3 cm

* Đáp án

B

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}
{A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}\cos \left( { - \frac{\pi }{2} - \frac{\pi }{3}} \right)\\
 \Leftrightarrow {5^5} = A_1^2 + A_2^2 - \sqrt 3 {A_1}{A_2} \Leftrightarrow {5^2} = {\left( {{A_1} + {A_2}} \right)^2} - 3,73{A_1}{A_2}\\
 \Rightarrow {A_1}{A_2} = \frac{{{{\left( {{A_1} + {A_2}} \right)}^2} - {5^2}}}{{3,732}}
\end{array}\)

Theo bất đẳng thức cô si:

\(\begin{array}{l}
{A_1} + {A_2} \ge 2\sqrt {{A_1}{A_2}}  \Rightarrow {A_1}{A_2} \le \frac{{{{\left( {{A_1} + {A_2}} \right)}^2}}}{4}\\
 \Rightarrow \frac{{{{\left( {{A_1} + {A_2}} \right)}^2} - {5^2}}}{{3,732}} \le \frac{{{{\left( {{A_1} + {A_2}} \right)}^2}}}{4} \Rightarrow {\left( {{A_1} + {A_2}} \right)^2} - 3,732\frac{{{{\left( {{A_1} + {A_2}} \right)}^2}}}{4} \le {5^2}\\
 \Rightarrow 0,067{\left( {{A_1} + {A_2}} \right)^2} \le {5^2} \Rightarrow \left( {{A_1} + {A_2}} \right) \le 19,3
\end{array}\)

Copyright © 2021 HOCTAP247