A. 4√7(A).
B. 4√7/7(A).
C. 2√3(A).
D. 2/√3(A).
B
+ Ta có:
\(\left\{ \begin{array}{l}
I = \frac{E}{{\sqrt {{R^2} + Z_L^2} }} = \frac{{NBS\omega }}{{\sqrt 2 \sqrt {{R^2} + Z_L^2} }} = \frac{{NBS2\pi p.n}}{{\sqrt 2 \sqrt {{R^2} + Z_L^2} }} = \frac{{A.n}}{{\sqrt {{R^2} + Z_L^2} }}\\
{Z_L} = \omega L = 2\pi np.L = B.n \Rightarrow {Z_L}{\rm{ ti le thuan voi n}}
\end{array} \right.\)
+ Khi tốc độ là:
\(\begin{array}{l}
n:I = \frac{{A.n}}{{\sqrt {{R^2} + Z_L^2} }} = 1\\
3n:{I^/} = \frac{{A.3n}}{{\sqrt {{R^2} + 9Z_L^2} }} = \sqrt 3 \\
\Rightarrow \sqrt 3 = \frac{{3\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + 9Z_L^2} }}\\
\Rightarrow {R^2} + 9Z_L^2 = 3{R^2} + 3Z_L^2 \Rightarrow Z_L^2 = \frac{{{R^2}}}{3}\\
2n:\\
{I_2} = \frac{{A.2n}}{{\sqrt {{R^2} + 4Z_L^2} }}\\
\Rightarrow \frac{{{I_2}}}{I} = 2\sqrt {\frac{{{R^2} + Z_L^2}}{{{R^2} + 4Z_L^2}}} \frac{{{I_2}}}{I} = 2\sqrt {\frac{{{R^2} + \frac{{{R^2}}}{3}}}{{{R^2} + 4.\frac{{{R^2}}}{3}}}} = \frac{{4\sqrt 7 }}{7}\left( A \right)
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247