A. 200 W
B. 190W
C. 180 W
D. 160 W
C
Từ đồ thị:
\(\frac{U_{L}^{\max }}{{{U}_{L1}}}=\frac{U_{L}^{\max }}{{{U}_{L2}}}=\frac{7}{4},$ và $U_{L}^{\max }=\frac{U}{\sqrt{1-{{n}^{-2}}}}\xrightarrow{\frac{U_{L}^{\max }}{U}=\frac{14}{6}=\frac{7}{3}}\Rightarrow n=\frac{7\sqrt{10}}{20}\Rightarrow {{\cos }^{2}}{{\varphi }_{L}}=\frac{2}{1+n}=0,95.\)
\({{U}_{L}}=L\omega .\frac{U}{R}\cos \varphi \Rightarrow \frac{1}{{{\omega }^{2}}}={{\left( \frac{U}{{{U}_{L}}}.\frac{L}{R}\cos \varphi \right)}^{2}}\Rightarrow \left\{ \begin{matrix} \frac{1}{\omega _{1}^{2}}={{\left( \frac{U}{{{U}_{L1}}}.\frac{L}{R}\cos {{\varphi }_{1}} \right)}^{2}} \\ \frac{1}{\omega _{2}^{2}}={{\left( \frac{U}{{{U}_{L2}}}.\frac{L}{R}\cos {{\varphi }_{2}} \right)}^{2}} \\ \frac{1}{\omega _{L}^{2}}={{\left( \frac{U}{U_{L}^{\max }}.\frac{L}{R}\cos {{\varphi }_{L}} \right)}^{2}} \\ \end{matrix} \right.. (1).\)
\(\begin{align} & \frac{2}{\omega _{L}^{2}}=\frac{1}{\omega _{1}^{2}}+\frac{1}{\omega _{2}^{2}}\xrightarrow{\left( 1 \right)} \\ & =2.{{\left( \frac{4}{7} \right)}^{2}}.0,95=0,62. \\ \end{align}\) (2)\)
Ta có: \({{P}_{1}}=U{{I}_{1}}\cos {{\varphi }_{1}}=U\frac{U}{{{Z}_{1}}}\cos {{\varphi }_{1}}=\frac{{{U}^{2}}}{R}{{\cos }^{2}}{{\varphi }_{1}}.\); \({{P}_{2}}=U{{I}_{2}}\cos {{\varphi }_{2}}=U\frac{U}{{{Z}_{2}}}\cos {{\varphi }_{2}}=\frac{{{U}^{2}}}{R}{{\cos }^{2}}{{\varphi }_{2}}.\)
\(=>{{P}_{1}}+{{P}_{2}}=\frac{{{U}^{2}}}{R}({{\cos }^{2}}{{\varphi }_{1}}+{{\cos }^{2}}{{\varphi }_{2}})\xrightarrow{(2)}.\)
Thế số:
\({{P}_{1}}+{{P}_{2}}={{P}_{CH}}.2.{{\left( \frac{{{U}_{L}}}{U_{L}^{\max }} \right)}^{2}}{{\cos }^{2}}{{\varphi }_{L}}=287.2.{{\left( \frac{4}{7} \right)}^{2}}0,95=178,1\ W\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247