A. 0,89.
B. 1,23.
C. 0,96.
D. 1,15.
D
Khi \(\overrightarrow{E}\) hướng thẳng đứng xuống dưới, chu kì của con lắc là: \({{T}_{1}}=2\pi \sqrt{\frac{l}{g+a}}\)
Khi \(\overrightarrow{E}\) có phương nằm ngang , chu kì của con lắc là: \({{T}_{2}}=\sqrt{\frac{l}{\sqrt{{{g}^{2}}+{{a}^{2}}}}}\)
Ta có tỉ số: \(\frac{{{T}_{2}}}{{{T}_{1}}}=\sqrt{\frac{g+a}{\sqrt{{{g}^{2}}+{{a}^{2}}}}}\)
Áp dụng bất đẳng thức Cô – si, ta có:
\({{g}^{2}}+{{a}^{2}}\ge 2ga\) (dấu “=” xảy ra \(\Leftrightarrow g=a\))
\(\Rightarrow 2\left( {{g}^{2}}+{{a}^{2}} \right)\ge {{g}^{2}}+{{a}^{2}}+2ga\Rightarrow 2\left( {{g}^{2}}+{{a}^{2}} \right)\ge {{\left( g+a \right)}^{2}}\)
\(\Rightarrow \frac{{{\left( g+a \right)}^{2}}}{{{g}^{2}}+{{a}^{2}}}\le 2\Rightarrow \sqrt{\frac{g+a}{\sqrt{{{g}^{2}}+{{a}^{2}}}}}\le \sqrt{\sqrt{2}}=1,19\left( 1 \right)\)
Lại có: \(g.a>0\Rightarrow {{g}^{2}}+{{a}^{2}}+2ga>{{g}^{2}}+{{a}^{2}}\)
\(\Rightarrow {{\left( g+a \right)}^{2}}>{{g}^{2}}+{{a}^{2}}\Rightarrow \frac{{{\left( g+a \right)}^{2}}}{\sqrt{{{g}^{2}}+{{a}^{2}}}}>1\,\,\left( 2 \right)\)
Từ (1) và (2), ta có \(\frac{{{T}_{2}}}{{{T}_{1}}}=1,15\) thỏa mãn.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247