Đặt số học sinh đạt giải cả 3 môn, 2 môn, 1 môn lần lượt là a, b, c (học sinh)
Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải).
Tổng số hs đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c.
Vì bất kỳ 2 môn nào cũng có ít nhất 1 hs đạt giải cả 2 môn nên:
- Có ít nhất 1 hs đạt giải cả 2 môn V và T.
- Có ít nhất 1 hs đạt giải cả 2 môn T và NN.
- Có ít nhất 1 hs đạt giải cả 2 môn V và NN.
Do đó b bằng hoặc lớn hơn 3.
Nếu a = 2 thì b bé nhất là 3, c bé nhất là 4, do đó tổng số giải bé nhất là:
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại).
Vì vậy a < 2, nên a = 1.
Ta có: 3 x 1 + 2 x b + c = 15
suy ra: 2 x b + c = 12.
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng).
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại do điều kiện b < c)
Vậy có 1 học sinh đạt 3 giải, 3 học sinh đạt 2 giải, 6 học sinh đạt 1 giải.
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (học sinh).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247