Bài 1. Làm tính chia:
a) \(\left( {3{a^2}b - 4a{b^3}} \right):5ab\)
b) \(\left( {3{x^3}{y^2} - 5{x^2}{y^2} + 4{x^3}{y^3}} \right):\left( {{x^2}{y^2}} \right).\)
Bài 2. Rút gọ n biểu thức: \(\left( {6{a^3} - 3{a^2}} \right):{a^2} + \left( {12{a^2} + 9a} \right):\left( {3a} \right).\)
Bài 3. Tìm số tự nhiên n để phép chia sau là phép chia hết:
\(\left( {{x^3} - 5{x^2} + 3x} \right):4{x^n}.\)
Bài 1.
a) \(\left( {3{a^2}b - 4a{b^3}} \right):5ab \)
\(= \left( {3{a^2}b:5ab} \right) + \left( { - 4a{b^3} - 5ab} \right) \)
\(= {3 \over 5}a - {4 \over 5}{b^2}.\)
b) \(\left( {3{x^3}{y^2} - 5{x^2}{y^3} + 4{x^3}{y^3}} \right):\left( {{x^2}{y^2}} \right)\)
\(=\left( {3{x^3}{y^2}:{x^2}{y^2}} \right) + \left( { - 5{x^2}{y^3}:{x^2}{y^2}} \right)\)\(\; + \left( {4{x^3}{y^3}:{x^2}{y^2}} \right) \)
\(= 3x - 5y + 4xy.\)
Bài 2.
\(\left( {6{a^3} - 3{a^2}} \right):{a^2} + \left( {12{a^2} + 9a} \right):(3a)\)
\(= 6a - 3 + 4a + 3 = 10a.\)
Bài 3. Điều kiện:
\(n \in N;n \le 1\) hay \(n = 0;n = 1.\)
Copyright © 2021 HOCTAP247