Bài 35 trang 129 SGK Toán 8 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình thoi ABCD có cạnh AB = 6cm, \(\widehat{A}\) = \(60^{\circ}\)

Tính diện tích hình thoi có cạnh dài 6cm và một trong các góc của nó có số đo là \(60^{\circ}\)

Hướng dẫn giải

Áp dụng tính chất tam giác đều, định lý pitago, công thức tính diện tích hình thang.

Lời giải chi tiết

Tính độ dài đường cao BH:

Theo định lí Pitago, tam giác vuông ABH có:

BH2 = AB2 – AH2 = AB2 - \(\left ( \frac{AB}{2} \right )^{2}\)

                             = AB2 - \(\frac{AB^{2}}{4}\) = \(\frac{3AB^{2}}{4}\).

Nên BH = \(\frac{AB.\sqrt{3}}2{}\) = \(\frac{6\sqrt{3}}2{} = 3\sqrt3\) (cm)

Tổng quát: Đường cao tam giác đều cạnh a có độ dài là: ha = \(\frac{a\sqrt{3}}2{}\)

Tính diện tích hình thoi ABCD.

Cách 1:

Ta có ∆ABC là tam giác đều (tam giác cân có  \(\widehat{A}\) = \(60^{\circ}\) ).

Từ B vẽ BH \(\perp\) AD thì HA = HD (tính chất tam giác đều).

Suy ra tam giác vuông AHB là nửa tam giác đều, BH là đường cao tam giác đều cạnh 6cm, BH = \(\frac{6\sqrt{3}}{2} = 3\sqrt 3\) (cm) 

Nên SABCD = BH. AD = \(3\sqrt 3. 6 = 18\sqrt 3\) (cm2)

Cách 2:

Vì ∆ABD là tam giác đều nên BD = AB = 6cm, AI là đường cao tam giác nên AI = \(\frac{6\sqrt{3}}{2} = 3\sqrt3\) (cm) \(\Rightarrow AC = 6\sqrt 3\) (cm)

Nên SABCD  = \(\frac{1}{2}\) BD. AC = \(\frac{1}{2} 6. 6\sqrt 3 = 18\sqrt 3\) (cm2)

Copyright © 2021 HOCTAP247