Một hình chữ nhật \(ABCD\) có \(AB > AD\), diện tích và chu vi của nó theo thứ tự là \(2a^2\) và \(6a\). Cho hình vẽ quay xung quanh cạnh \(AB\), ta được một hình trụ.
Tính diện tích xung quanh và thể tích của hình trụ này.
+) Quay hình chữ nhật quanh một cạnh cố định của nó ta được một hình trụ.
+) Chu vi hình chữ nhật có kích thước \(a, \, b\) là: \(C=2(a+b).\)
+) Diện tích hình chữ nhật có kích thước \(a, \, b\) là: \(S=ab.\)
+) Diện tích xung quanh của hình trụ: \(S_{xq}=2\pi rh.\)
+) Diện tích toàn phần của hình trụ: \(S_{tp}=2 \pi rh +2 \pi r^2.\)
+) Thể tích hình trụ là: \(V=\pi r^2h.\)
Lời giải chi tiết
Theo đề bài ta có:
Diện tích hình chữ nhật \(ABCD\) là: \(AB.AD = 2a^2\) (1)
Chu vi hình chữ nhật là: \(2(AB + CD) = 6a ⇒ AB + CD = 3a\) (2)
Từ (1) và (2), ta có \(AB\) và \(CD\) là nghiệm của phương trình:
\({x^2}-{\rm{ }}3ax{\rm{ }}-{\rm{ }}2{a^2} = {\rm{ }}0\)
Giải phương trình ta được: \({x_1} = {\rm{ }}2a;{\rm{ }}{x_2} = {\rm{ }}a\)
Theo giả thiết \(AB > AD\) nên ta chọn \(AB = 2a; AD = a\)
Khi quay hình chữ nhật quanh \(AB\) ta được hình trụ có \(h=AB=2a\) và \(r=AD=a.\)
Vậy diện tích xung quanh hình trụ là:
\({S_{xq}} = 2\pi .AD.AB = 2\pi .a.2a = 4{\rm{ }}\pi {a^2}\)
Thể tích hình trụ là:
\(V{\rm{ }} = {\rm{ }}\pi {\rm{ }}.{\rm{ }}A{D^2}.{\rm{ }}AB{\rm{ }} = {\rm{ }}\pi .{\rm{ }}{a^2}.{\rm{ }}2a{\rm{ }} = {\rm{ }}2\pi {a^3}\)
Copyright © 2021 HOCTAP247