Xác định tọa độ giao điểm của parabol \(y = ax^2+ bx + c\) với trục tung. Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt và viết tọa độ của các giao điểm trong trường hợp đó.
+) Phương trình trục tung: \(x=0.\)
+) Phương trình trục hoành: \(y=0.\)
+) Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt \(\Leftrightarrow \) phương trình hoành độ giao điểm có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0.\)
Lời giải chi tiết
Với \(x=0\) ta được \(y=c \Rightarrow \) Giao điểm của đồ thị hàm số với trục tung \(P(0; c).\)
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là: \(a x^2+bx+c=0. \, \, \, (1)\)
Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt \(\Leftrightarrow \) phương trình \((1)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0\) \( \Leftrightarrow b^2-4ac > 0.\)
Khi đó đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có tọa độ: \(A\left( {\frac{{ - b - \sqrt \Delta }}{{2a}};\;0} \right) \) và \( B\left( {\frac{{ - b + \sqrt \Delta }}{{2a}};\;0} \right).\)
Copyright © 2021 HOCTAP247