Bài 4 trang 12 SGK Hình học 10

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho tam giác \(ABC\). Bên ngoài tam giác vẽ các hình bình hành \(ABIJ, BCPQ, CARS\). Chứng minh rằng \(\overrightarrow{RJ} + \overrightarrow{IQ} + \overrightarrow{PS}=  \overrightarrow{0}.\)

Hướng dẫn giải

Với quy tắc ba điểm tùy ý \(A, \, \, B, \, \, C\) ta luôn có:

\(+ )\;\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (quy tắc ba điểm).

\( + )\;\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \) (quy tắc trừ).

Lời giải chi tiết

Ta xét tổng:

\(\overrightarrow{RJ} + \overrightarrow{JI} +\overrightarrow{IQ} + \overrightarrow{QP}+\overrightarrow{PS}+ \overrightarrow{SR} \)\(= \overrightarrow{RR}= \overrightarrow{0}\)(1)

Mặt khác, ta có \(ABIJ, BCPQ\) và \(CARS\) là các hình bình hành nên:

\(\overrightarrow{JI}  = \overrightarrow{AB}\)

\(\overrightarrow{QP} = \overrightarrow{BC}\)

\(\overrightarrow{SR}= \overrightarrow{CA}\)

\(\Rightarrow \overrightarrow{JI}+\overrightarrow{QP}+\overrightarrow{SR}\)\(= \overrightarrow{AB}+ \overrightarrow{BC}+\overrightarrow{CA}= \overrightarrow{AA}= \overrightarrow{0}\)  (2)

Từ (1) và (2) suy ra : \(\overrightarrow{RJ} + \overrightarrow{IQ} + \overrightarrow{PS}\)\(=  \overrightarrow{0}.\) (đpcm)

Copyright © 2021 HOCTAP247