Câu 19 trang 14 SGK Đại số 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Xác định xem các mệnh đề sau đây đúng hay sai và nêu mệnh đề phủ định của mỗi mệnh đề đó.

a) \(\exists x\, \in \,R,{x^2} = 1\)

b) \(\exists n\, \in \,N,\,n(n + 1)\) là một số chính phương

c) ∀x ∈ R, (x – 1)2 ≠ x – 1

d) ∀x ∈ N, n2 + 1 không chia hết cho 4.

Hướng dẫn giải

a) Mệnh đề “\(\exists x\, \in \,R,{x^2} = 1\)” là đúng vì x = 1 thì 12 = 1

Mệnh đề phủ định là: “∀x ∈ R, x2 ≠ 1”

b) Mệnh đề “\(\exists n\, \in \,N,\,n(n + 1)\)"  là một số chính phương, đúng vì:

Với n = 0; n(n + 1) = 0 là một số chính phương

Mệnh đề phủ định là: “∀x ∈ N, n(n + 1) không là số chính phương.

c)  Mệnh đề “∀x ∈ R, (x – 1)2 ≠ x – 1” là sai vì:

x = 1 : (1 – 1)2 = 1 – 1

Mệnh đề phủ định là “\(\exists x \in R;\,{(x - 1)^2} = x - 1\) ”

d) Mệnh đề “∀x ∈ N, n2 + 1 không chia hết cho 4” là đúng vì:

Với n = 2k (k ∈ N) thì n2 + 1 lẻ nên không chia hết cho 4.

Với n = 2k + 1 (k ∈ N) thì n2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 không chia hết cho 4.

Mệnh đề phủ định là: “\(\exists n \in N,\,{n^2} + 1\)  chia hết cho 4”.

 

Copyright © 2021 HOCTAP247