Bài 17 trang 90 SGK Hình học 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Viết phương trình đường thẳng song song và cách đường thẳng \(ax + by + c = 0\) một khoảng bằng h cho trước.

Hướng dẫn giải

Gọi \(\Delta :ax + by + c = 0\)

Đường thẳng \(\Delta '\) song song với đường thẳng \(\Delta \) đã cho có dạng:

\(\Delta ':ax + by + c' = 0.\)

Lấy \(M\left( {{x_0};{y_0}} \right) \in \Delta \) ta có:

\(a{x_0} + b{y_0} + c = 0 \Leftrightarrow a{x_0} + b{y_0} =  - c\)

Khoảng cách từ M đến \(\Delta '\) bằng h nên ta có:

\(\eqalign{
& h = {{|a{x_0} + b{y_0} + c'|} \over {\sqrt {{a^2} + {b^2}} }} = {{|c' - c|} \over {\sqrt {{a^2} + {b^2}} }} \cr&\Rightarrow c' - c = \pm h\sqrt {{a^2} + {b^2}} \cr
& \Rightarrow c' = c \pm h\sqrt {{a^2} + {b^2}} \cr} \) 

Vậy có hai đường thẳng thỏa mãn yêu cầu bài toán

\(ax + by + c + h\sqrt {{a^2} + {b^2}}  = 0;\)

\(ax + by + c - h\sqrt {{a^2} + {b^2}}  = 0.\)

Copyright © 2021 HOCTAP247