Cho điểm \(A\) không nằm trong mặt phẳng \((α)\) chứa tam giác \(BCD\). Lấy \(E,F\) là các điểm lần lượt nằm trên các cạnh \(AB, AC\).
a) Chứng minh đường thẳng \(EF\) nằm trong mặt phẳng \((ABC)\).
b) Khi \(EF\) và \(BC\) cắt nhau tại \(I\), chứng minh \(I\) là điểm chung của hai mặt phẳng \((BCD)\) và \((DEF)\).
a) Chỉ ra \(E \in \left( {ABC} \right);\,\,F \in \left( {ABC} \right)\).
b) Chứng minh \(I \in \left( {DEF} \right);\,\,I \in \left( {BCD} \right)\).
Lời giải chi tiết
a) Ta có:
\(\left\{ \begin{array}{l}
E \in AB,\,\,AB \subset \left( {ABC} \right) \Rightarrow E \in \left( {ABC} \right)\\
E \in AC,\,\,AC \subset \left( {ABC} \right) \Rightarrow F \in \left( {ABC} \right)
\end{array} \right. \\ \Rightarrow EF \subset \left( {ABC} \right)\)
b) Ta có:
\(\left\{ \begin{array}{l}I \in EF,\,\,EF \subset \left( {ABC} \right) \Rightarrow I \in \left( {ABC} \right)\\I \in CD,\,\,CD \subset \left( {BCD} \right) \Rightarrow I \in \left( {ABC} \right)\end{array} \right. \Rightarrow I\) là điểm chung của hai mặt phẳng \((BCD)\) và \((DEF)\).
Copyright © 2021 HOCTAP247