Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Gọi \(M\) là giao điểm của đường thẳng \(d\) và mặt phẳng \((α )\). Chứng minh \(M\) là điểm chung của \((α )\) với một mặt phẳng bất kì chứa \(d\)

Hướng dẫn giải

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), chứng minh \(\left\{ \begin{array}{l}M \in \left( \alpha \right)\\M \in \left( \beta \right)\end{array} \right.\)

Lời giải chi tiết

\(M = d \cap \left( \alpha  \right) \Rightarrow M \in \left( \alpha  \right)\)

Gọi \((β)\) là mặt phẳng bất kì chứa \(d\), ta có \(\left\{ \matrix{M \in d \hfill \cr d \subset (\beta ) \hfill \cr} \right. \Rightarrow M \in (\beta )\)

Vậy \(M\) là điểm chung của \((α )\) và mọi mặt phẳng \((β)\) chứa \(d\).

Copyright © 2021 HOCTAP247