Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm giới hạn của dãy số (un) xác định bởi

\({u_n} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {n\left( {n + 1} \right)}}.\)

Hướng dẫn : Với mỗi số nguyên dương k, ta có

\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)

Hướng dẫn giải

\({u_n} = \left( {1 - {1 \over 2}} \right) + \left( {{1 \over 2} - {1 \over 3}} \right) + ... \)

          \(+ \left( {{1 \over {n - 1}}}-{1 \over n} \right) + \left( {{1 \over n} - {1 \over {n + 1}}} \right) = 1 - {1 \over {n + 1}}\)

Do đó  \(\lim {u_n} = \lim \left( {1 - {1 \over {n + 1}}} \right) = 1\)

Copyright © 2021 HOCTAP247