Câu 61 trang 178 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm các giá trị của tham số m để hàm số

\(f\left( x \right) = \left\{ {\matrix{{{{{x^2} - 3x + 2} \over {{x^2} - 2x}}\,\text{ với }\,x < 2} \cr {mx + m + 1\,\text{ với }\,x \ge 2} \cr} } \right.\)

Liên tục tại điểm \(x = 2\)

Hướng dẫn giải

Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {mx + m + 1} \right) = 3m + 1 = f\left( 2 \right) \cr
& \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} {{{x^2} - 3x + 2} \over {{x^2} - 2x}}\cr& = \mathop {\lim }\limits_{x \to {2^ - }} {{\left( {x - 1} \right)\left( {x - 2} \right)} \over {x\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to {2^ - }} {{x - 1} \over x} = {1 \over 2} \cr} \)

f liên tục tại mọi \(x ≠ 2\). Do đó :

f liên tục trên \(\mathbb R ⇔\) f liên tục tại \(x = 2\)

\(⇔  \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right) \)

\(\Leftrightarrow 3m + 1 = {1 \over 2} \Leftrightarrow m = - {1 \over 6}\)

Copyright © 2021 HOCTAP247