Chứng minh rằng với mọi \(n ≥ 1\), ta có :
a. Nếu \(f\left( x \right) = \frac{1}{x}\,\text{ thì }\,{f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\)
b. Nếu \(f\left( x \right) = \cos x\,\text{ thì }\,{f^{\left( {4n} \right)}}\left( x \right) = \cos x.\)
c. Nếu \(f\left( x \right) = \sin ax\) (a là hằng số) thì \({f^{\left( {4n} \right)}}\left( x \right) = {a^{4n}}\sin ax.\)
a. Cho \(f\left( x \right) = \frac{1}{x}\left( {x \ne 0} \right).\) Ta hãy chứng minh công thức :
\({f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\left( {\forall x \ge 1} \right)\,\,\left( 1 \right)\) bằng phương pháp qui nạp.
+ Với \(n = 1\), ta có : \({f^{\left( n \right)}}\left( x \right) = f'\left( x \right) = - \frac{1}{{{x^2}}}\,\text{ và }\,\frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}} = - \frac{1}{{{x^2}}}\)
Suy ra (1) đúng khi n = 1.
+ Giả sử (1) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là : \({f^{\left( k \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}\),
Ta phải chứng minh (1) cũng đúng cho trường hợp \(n = k + 1\), tức là :
\({f^{\left( {k + 1} \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)
Thật vậy, ta có :
\({f^{\left( {k + 1} \right)}}\left( x \right) = \left[ {{f^{\left( k \right)}}\left( x \right)} \right]' = - \frac{{{{\left( { - 1} \right)}^k}k!.\left( {k + 1} \right){x^k}}}{{{x^{2\left( {k + 1} \right)}}}} = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)
b. Cho \(f(x) = \cos x\). Ta hãy chứng minh công thức :
\({f^{\left( {4n} \right)}}\left( x \right) = \cos x\left( {\forall n \ge 1} \right)\,\,\left( 2 \right)\) bằng phương pháp qui nạp.
Ta có: \(f'\left( x \right) = - \sin x;f"\left( x \right) = - \cos x;\)
\(f'''\left( x \right) = \sin x;{f^{\left( 4 \right)}}\left( x \right) = \cos x\)
+ Với n = 1 thì \({f^{\left( {4n} \right)}}\left( x \right) = {f^{\left( 4 \right)}}\left( x \right) = \cos x\)
Suy ra (2) đúng khi n = 1
+ Giả sử (2) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là : \({f^{\left( {4k} \right)}}\left( x \right) = \cos x,\)
Ta phải chứng minh (2) cũng đúng cho trường hợp \(n = k + 1\), tức là phải chứng minh :
\({f^{\left( {4\left( {k + 1} \right)} \right)}}\left( x \right) = \cos x\,\left( {hay\,{f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x} \right)\)
Thật vậy, vì :
\(\begin{array}{l}
{f^{\left( {4k} \right)}}\left( x \right) = \cos x\,\text{ nên }\,{f^{\left( {4k + 1} \right)}}\left( x \right) = - \sin x\\
{f^{\left( {4k + 2} \right)}}\left( x \right) = - \cos x\\
{f^{\left( {4k + 3} \right)}}\left( x \right) = \sin x\\
{f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x
\end{array}\)
c. Ta có:
\(\begin{array}{l}
f'\left( x \right) = a{\mathop{\rm cosax}\nolimits} \\
f"\left( x \right) = - {a^2}\sin ax\\
{f^{\left( 3 \right)}}\left( x \right) = - {a^3}\cos ax\\
{f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax
\end{array}\)
Với \(n = 1\) ta có \({f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax,\) đẳng thức đúng với \(n = 1\)
Giả sử đẳng thức đúng với \(n = k\) tức là : \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)
Với \(n = k + 1\) ta có \({f^{\left( {4k + 4} \right)}}\left( x \right) = {\left( {{f^{\left( {4k} \right)}}} \right)^{\left( 4 \right)}}\left( x \right) = {\left( {{a^{4k}}\sin ax} \right)^{\left( 4 \right)}}\)
Do \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)
\(\begin{array}{l}
{f^{\left( {4k + 1} \right)}}\left( x \right) = {a^{4k + 1}}\cos ax\\
{f^{\left( {4k + 2} \right)}}\left( x \right) = - {a^{4k + 2}}\sin ax\\
{f^{\left( {4k + 3} \right)}}\left( x \right) = - {a^{4k + 3}}\cos ax\\
{f^{\left( {4k + 4} \right)}}\left( x \right) = {a^{4k + 4}}\sin ax
\end{array}\)
Vậy đẳng thức đúng với \(n = k + 1\), do đó đẳng thức đúng với mọi n.
Copyright © 2021 HOCTAP247