Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 5. Đạo hàm cấp cao Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao

Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

a. Nếu \(y = A\sin \left( {\omega t + \varphi } \right) + B\cos \left( {\omega t + \varphi } \right),\) trong đó A, B, ω và φ là những hằng số, thì  \(y" + {\omega ^2}y = 0.\)

b. Nếu \(y = \sqrt {2x - {x^2}} \) thì \({y^3}y" + 1 = 0.\)

Hướng dẫn giải

a. 

\(\begin{array}{l}
y = A\sin \left( {\omega t + \varphi } \right) + B\cos \left( {\omega t + \varphi } \right)\,\text{ nên }\\
y' = A\omega \cos \left( {\omega t + \varphi } \right) - B\omega \sin \left( {\omega t + \varphi } \right)\\
y" = - A{\omega ^2}\sin \left( {\omega t + \varphi } \right) - B{\omega ^2}\cos \left( {\omega t + \varphi } \right)\\
Suy\,ra\,:\\\,y" + {\omega ^2}y = - \left[ {A{\omega ^2}\sin \left( {\omega t + \varphi } \right)+B{\omega ^2}\cos \left( {\omega t + \varphi } \right)} \right]\\
+ {\omega ^2}\left[ {A\sin \left( {\omega t + \varphi } \right) + B\cos \left( {\omega t + \varphi } \right)} \right] = 0
\end{array}\)

b. Ta có: 

\(\begin{array}{l}
y' = \frac{{2 - 2x}}{{2\sqrt {2x - {x^2}} }} = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }}\\
y'' = \frac{{ - \sqrt {2x - {x^2}} - \left( {1 - x} \right).\frac{{1 - x}}{{\sqrt {2x - {x^2}} }}}}{{\left( {2x - {x^2}} \right)}}\\
= \frac{{ - 2x + {x^2} - 1 + 2x - {x^2}}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }} = \frac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }}\\
Suy\,ra\,\\{y^3}.y" + 1 = \sqrt {{{\left( {2x - {x^2}} \right)}^3}} .\frac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }} + 1 = 0
\end{array}\)

Copyright © 2021 HOCTAP247