Tính tích phân \(\int_{0}^{1}x(1-x)^{5}dx\) bằng hai phương pháp:
a) Đổi biến số : \(u = 1 - x\);
b) Tính tích phân từng phần.
a) Đặt \(u = 1 - x\).
b) Đặt \(\left\{ \begin{array}{l}u = x\\dv = {\left( {1 - x} \right)^5}dx\end{array} \right.\)
Lời giải chi tiết
a) Đặt \(u = 1 - x \Rightarrow x = 1 - u \Rightarrow dx = - du\).
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 1\\x = 1 \Rightarrow u = 0\end{array} \right.\)
\(\begin{array}{l}\Rightarrow \int\limits_0^1 {x{{\left( {1 - x} \right)}^5}dx} = - \int\limits_1^0 {\left( {1 - u} \right){u^5}du} \\= \int\limits_0^1 {\left( {{u^5} - {u^6}} \right)du} = \left. {\left( {\frac{{{u^6}}}{6} - \frac{{{u^7}}}{7}} \right)} \right|_0^1 = \frac{1}{6} - \frac{1}{7} = \frac{1}{{42}}\end{array}\)
b) Đặt \(\left\{ \begin{array}{l}u = x\\dv = {\left( {1 - x} \right)^5}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \frac{{{{\left( {1 - x} \right)}^6}}}{6}\end{array} \right.\)
\(\begin{array}{l}\Rightarrow \int\limits_0^1 {x\left( {1 - {x^5}} \right)dx} = - x\left. {\frac{{{{\left( {1 - x} \right)}^6}}}{6}} \right|_0^1 + \frac{1}{6}\int\limits_0^1 {{{\left( {1 - x} \right)}^6}dx} \\= - \frac{1}{6}\left. {\frac{{{{\left( {1 - x} \right)}^7}}}{7}} \right|_0^1 = \frac{1}{{42}}
\end{array}\)
Copyright © 2021 HOCTAP247