Bài 36 Trang 175 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 36. Tính thể tích của vật thể \(T\) nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) \((0 \le x \le \pi )\) là một hình vuông cạnh là \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).

Hướng dẫn giải

Ta có:

\(\eqalign{
& S(x) = {(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} )^2} = 4\sin x \cr
& V = \int\limits_0^\pi {S(x)dx = \int\limits_0^\pi {4\sin xdx = - 4\cos x\mathop |\nolimits_0^\pi } } = 8 \cr} \)

Copyright © 2021 HOCTAP247