a) \(BH = CK.\)
b) \(BC < DE.\)
a) Ta có \(\widehat B = {\widehat C_1}\) (gt) và \({\widehat C_1} = {\widehat C_2}\) (đối đỉnh) \( \Rightarrow \widehat B = {\widehat C_2}\).
Do đó hai tam giác vuông \(\Delta BH{\rm{D}} = \Delta CKE\) (ch.gn)
\( \Rightarrow BH = CK\).
b) Ta có \(BC = BH + HC\)
\(HK + HC + CK\), mà \(HB = CK\) (cmt)
\( \Rightarrow BC = HK\).
Ta có \(\Delta DHI\) vuông tại H nên \(HI Tương tự \(IK \( \Rightarrow HI + IK Hay \(HK
Copyright © 2021 HOCTAP247