Nếu ABCD là hình bình hành thì: \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD}.\)
Cho ba điểm A, B, C bất kì thì \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {BC}\).
Quy tắc ba điểm với phép trừ vectơ: \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} ..\)
Cho hình hộp ABCD. A’B’C’D’ thì \(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA'}}}\).
Cho vectơ \(\vec a\) và một số thực \(k \ne 0\) ta được vectơ \(k \vec a\) có các tính chất sau:
Điều kiện cần và đủ để hai vectơ \(\vec a, \vec b\)cùng phương là có một số thực k để \(\overrightarrow a = k.\overrightarrow b.\)
Cho hình lăng trụ ABC.A’B’C’. Hãy nêu tên các vecto bằng nhau có điểm đầu và điểm cuối là các đỉnh của hình lăng trụ.
Theo tính chất hình lăng trụ ta có:
\(\begin{array}{l} \overrightarrow {AB} = \overrightarrow {A'B'} ;\,\,\overrightarrow {BC} = \overrightarrow {B'C'} ;\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \\ \overrightarrow {AB} = - \overrightarrow {BA} ;\,\,\overrightarrow {BC} = - \overrightarrow {CB} ;\,\,\overrightarrow {CA} = - \overrightarrow {AC} \\ \overrightarrow {{\rm{AA'}}} = \overrightarrow {BB'} = \overrightarrow {CC'} = - \overrightarrow {{\rm{A'A}}} = - \overrightarrow {B'B} = - \overrightarrow {C'C} . \end{array}\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD}\).
Gọi O là tâm của hình bình hành ABCD. Ta có:
\(\begin{array}{l} \overrightarrow {SA} + \overrightarrow {AO} = \overrightarrow {SO} \\ \overrightarrow {SC} + \overrightarrow {CO} = \overrightarrow {SO} \\ \Rightarrow \overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} (1) \end{array}\)
Theo quy tắc hình bình hành: \(\overrightarrow {{\rm{SB}}} + \overrightarrow {SD} = 2\overrightarrow {SO} (2)\)
Từ (1) và (2) ta có: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD}\).
Cho tứ diện ABCD. Trên cạnh AD lấy điểm M sao cho \(\overrightarrow {AM} = 3\overrightarrow {MD}\) và trên cạnh BC lấy điểm N sao cho \(\overrightarrow {NB} = - 3\overrightarrow {NC}\). Chứng tỏ rằng \(\overrightarrow {AB} ,\overrightarrow {DC} ,\overrightarrow {MN}\) đồng phẳng.
Theo giả thiết ta có: \(\overrightarrow {AM} = 3\overrightarrow {MD} \Rightarrow \overrightarrow {MA} = - \overrightarrow {MD}\) và \(\overrightarrow {{\rm{NB}}} = - 3\overrightarrow {NC}\)
Mà: \(\overrightarrow {{\rm{MN}}} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN}\)
và \(\overrightarrow {{\rm{MN}}} = \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} (1)\)
\(\Rightarrow 3\overrightarrow {MN} = 3\overrightarrow {MD} + 3\overrightarrow {DC} + 3\overrightarrow {CN} (2)\)
\(\begin{array}{l} (1) + (2) \Rightarrow 4\overrightarrow {MN} = \overrightarrow {MA} + 3\overrightarrow {MD} + \overrightarrow {AB} + 3\overrightarrow {DC} + \overrightarrow {BN} + 3\overrightarrow {CN} \\ \Leftrightarrow 4\overrightarrow {MN} = \overrightarrow {MA} + 3\overrightarrow {MD} \Leftrightarrow \overrightarrow {MN} = \frac{1}{4}\overrightarrow {MA} + \frac{3}{4}\overrightarrow {MD} \end{array}\)
Hệ thức trên chứng tỏ: \(\overrightarrow {AB} ,\overrightarrow {DC} ,\overrightarrow {MN}\) đồng phẳng.
Nội dung bài học sẽ giúp các em nắm được các khái niệm Vectơ trong không gian, phương pháp chứng minh ba vectơ đồng phẳng. Bên cạnh đó là các ví dụ minh họa sẽ giúp các em hình thành các kĩ năng giải bài tập liên quan đến vectơ trong không gian.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.
Bài tập 3.2 trang 129 SBT Hình học 11
Bài tập 3.3 trang 129 SBT Hình học 11
Bài tập 3.4 trang 130 SBT Hình học 11
Bài tập 3.5 trang 130 SBT Hình học 11
Bài tập 3.6 trang 130 SBT Hình học 11
Bài tập 3.7 trang 130 SBT Hình học 11
Bài tập 1 trang 91 SGK Hình học 11 NC
Bài tập 2 trang 91 SGK Toán 11 NC
Bài tập 3 trang 91 SGK Hình học 11 NC
Bài tập 4 trang 91 SGK Hình học 11 NC
Bài tập 5 trang 91 SGK Hình học 11 NC
Bài tập 6 trang 91 SGK Hình học 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247